

RECEIVED
23/03/2023
URBAN PLANNING

CITY OF MARIBYRNONG

ADVERTISED PLAN

2-44 GRAINGER ROAD, WEST FOOTSCRAY

Acoustic Report

16 December 2022

Paintback Ltd C/- Davis Advisory

MD913-01F01 Acoustic Report (r6).docx

Document details

Detail	Reference
Doc reference:	MD913-01F01 Acoustic Report (r6).docx
Prepared for:	Paintback Ltd C/- Davis Advisory
Address:	Level 21, Tower One, Collins Square 727 Collins Street, Docklands VIC 3008
Attention:	Kayla Gregg

Document control

Date	Revision history	Non-issued revision	Issued revision	Prepared	Instructed	Reviewed / Authorised
31.10.2022	Issued		0	M. Weston		N. Peters
04.11.2022	Minor amendments		1	M. Weston		N. Peters
22.11.2022	Further amendments		2	M. Weston		N. Peters
29.11.2022	Operational scenario changes		3	M. Weston		N. Peters
14.12.2022	Final		4	M. Weston		N. Peters
16.12.2022	Final issued		5	M. Weston		N. Peters
16.12.2022	Further amendments		6	M. Weston		N. Peters

File Path: M:\AssocMelbProjects\MD901-MD950\MD913 ar 2-44 Graingers Rd, West Footscray - Paint Recovery Facility\1 Docs\MD913-01F01 Acoustic Report (r6).docx

Important Disclaimers:

The work presented in this document was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian/New Zealand Standard AS/NZS ISO 9001.

This document is issued subject to review and authorisation by the suitably qualified and experienced person named in the last column above. If no name appears, this document shall be considered as preliminary or draft only and no reliance shall be placed upon it other than for information to be verified later.

This document is prepared for the particular requirements of our Client referred to above in the 'Document details' which are based on a specific brief with limitations as agreed to with the Client. It is not intended for and should not be relied upon by a third party and no responsibility is undertaken to any third party without prior consent provided by Renzo Tonin & Associates. The information herein should not be reproduced, presented or reviewed except in full. Prior to passing on to a third party, the Client is to fully inform the third party of the specific brief and limitations associated with the commission.

In preparing this report, we have relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and/or from other sources. Except as otherwise stated in the report, we have not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

We have derived data in this report from information sourced from the Client (if any) and/or available in the public domain at the time or times outlined in this report. The passage of time, manifestation of latent conditions or impacts of future events may require further examination and re-evaluation of the data, findings, observations and conclusions expressed in this report.

We have prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

The information contained herein is for the purpose of acoustics only. No claims are made and no liability is accepted in respect of design and construction issues falling outside of the specialist field of acoustics engineering including and not limited to structural integrity, fire rating, architectural buildability and fit-for-purpose, waterproofing and the like. Supplementary professional advice should be sought in respect of these issues.

External cladding disclaimer: No claims are made and no liability is accepted in respect of any external wall and/or roof systems (eg facade / cladding materials, insulation etc) that are: (a) not compliant with or do not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes; or (b) installed, applied, specified or utilised in such a manner that is not compliant with or does not conform to any relevant non-acoustic legislation, regulation, standard, instructions or Building Codes.

Executive summary

Renzo Tonin & Associates undertook an acoustic assessment of the proposed paint recovery plant to be located at 2-44 Grainger Road, West Footscray (the Subject Facility), to assess noise from commercial operations.

We have been briefed by Davis Advisory to consider Acoustics in relation to the proposed Paint Circular Economy HQ (PaCE HQ) project in West Footscray. The PaCE HQ project is described in Annexure D of the application, and our comments and findings are referrable to that project.

In conducting the acoustic assessment, Renzo Tonin & Associates has:

- Ouantified relevant noise criteria: EPA 1826-P1
- Measured noise levels from operational activities and associated mechanical equipment at a similar industrial facilities
- Analysed the noise monitoring and measurements
- Constructed a three-dimensional noise model of the Subject Facility, to assess various noise impacts (described below)
- Assessed and compared predicted levels to noise limits.

The outcomes of the acoustic assessment are:

- Noise levels from the representative mechanical services were found to conform at all times with EPA 1826-P1 criteria.
- Noise levels from anticipated delivery activities were found to conform at all times with EPA 1826-P1 criteria.
- Noise levels from the warehouse/plant operations (i.e. other than deliveries) were found to conform at all times
 with EPA 1826-P1 criteria, with the specific requirement for a not less than 6dB noise reduction to the identified
 equipment.

The 6dB reduction could be achieved via localised enclosures or wall/ceiling treatments to the warehouse. Such treatments are commonplace, and application is straight forward to design, during the design stage when more detailed information is available.

Based on the above, the PaCE HQ project is expected to conform with all nominated criteria, and on this basis, not unreasonably affect noise amenity in the area.

Contents

Execu	utive	summary	3
1	Intro	duction	5
2	Site	overview	6
3	Nois	e measurements	8
	3.1	Unattended long-term noise monitoring	8
	3.2	Offsite attended short-term noise measurements	9
4	Nois	e sources	10
5	Crite	ria	11
	5.1	EPA 1826-P1 commercial noise legislation	11
6	Nois	e assessment	12
	6.1	Noise propagation model	12
	6.2	Commercial noise assessment	12
		6.2.1 Operational modelling scenarios and assumptions	12
7	Cond	clusion	17
APPE	NDIX	A Glossary of terminology	18
APPE	NDIX	X B Noise monitoring	21
	B.1	L1 – 1 Robbs Road Resident's front yard	21
	B.2	L2 – 4 Hansen Street Resident's rear yard	22
List	of ta	bles	
Table	1:	Existing land uses surrounding the Subject Facility	6
Table	2:	Noise monitoring locations	8
Table	3:	Period average background noise levels	8
Table	4:	Offsite noise measurement locations	9
Table	5:	Specific internal warehouse equipment/activity noise levels	10
Table	6:	Typical equipment/activity noise levels	11
Table	7:	EPA 1826-P1 noise limits	11
Table	8:	Commercial noise assessment	15
List	of fi	gures	
Figure	e 1:	Subject Site and Facility & surrounding unattended monitoring and attended measurement locations	7
Figure	e 2:	Layout and sound source locations	14

1 Introduction

Renzo Tonin & Associates undertook an acoustic assessment of the proposed paint recovery plant to be located at 2-44 Grainger Road, West Footscray (the Subject Facility), to assess noise from commercial operations.

We have been briefed by DA to consider Acoustics in relation to the proposed PaCE HQ project in West Footscray. The PaCE HQ project is described in Annexure D of the application, and our comments and findings are referrable to that project.

The acoustic assessment has been based on drawings (detailed within this assessment) and information provided by the client.

The work documented in this report was carried out in accordance with the Renzo Tonin & Associates Quality Assurance System, which is based on Australian Standard / NZS ISO 9001. Appendix A contains a glossary of acoustic terms used in this report.

2 Site overview

The Subject Facility is proposing operate Monday to Saturday from 7am to 6pm. Figure 1 and Table 1 present an overview of the Subject Facility surrounding land uses.

Table 1: Existing land uses surrounding the Subject Facility

Subject Facility	2-44 Grainger Road, West Footscray
	Industrial 1 Zone (IN1Z) & Industrial 3 Zone (1N3Z)
North of the Subject Facility	Rail corridor
	18 Newman Drive, Footscray
	General Residential Zone -Schedule 1 (GRZ1)
	 Residential building approximately 120 metres from the Subject Facility's existing northern boundary, across rail corridor
East of the Subject Facility	268 Geelong Road, West Footscray
	Industrial 1 Zone (IN1Z)
	Fenner Conveyors – Industrial equipment supplier
South of the Subject Facility	46 Grainger Road, West Footscray
	Industrial 3 Zone (IN3Z)
	Mixed commercial showrooms / warehouses
	R2 - 2 Robbs Road, West Footscray
	General Residential Zone -Schedule 1 (GRZ1)
	 Residential building approximately 70 metres from the Subject Facility
	R4 - 4 Robbs Road, West Footscray
	General Residential Zone -Schedule 1 (GRZ1)
	Residential building approximately 80 metres from the Subject Facility
	R5 - 5 Hansen Street, West Footscray
	General Residential Zone -Schedule 1 (GRZ1)
	Residential building approximately 95 metres from the Subject Facility
West of the Subject Facility	11 Braid Street, West Footscray
	Industrial 3 Zone (IN3Z)
	Keables P/L – Fastener supplier
	R1 - 1 Robbs Road, West Footscray
	Industrial 3 Zone (IN3Z)
	 Residential building approximately 35 metres from the Subject Facility
	R3 - 3 Robbs Road, West Footscray
	General Residential Zone -Schedule 1 (GRZ1)
	Residential building approximately 50 metres from the Subject Facility
	R6 – 17 Braid Street, West Footscray
	General Residential Zone -Schedule 1 (GRZ1)

Figure 1: Subject Site and Facility & surrounding unattended monitoring and attended measurement locations

3 Noise measurements

3.1 Unattended long-term noise monitoring

To quantify the existing noise levels in the area, Renzo Tonin & Associates conducted unattended noise monitoring as detailed below. We conducted door knocking, to seek permission to place the monitoring equipment for the duration, with both residents happy to provide access. The monitor locations (L1 & L2) are shown in Figure 1 and described in Table 2 below. Appendix B presents graphs of the unattended monitored noise levels at each location.

Table 2: Noise monitoring locations

ID	Location	Details			
L1	1 Robbs Road- Representative of the most affected residential receiver (at 2 Robbs Road) – approximately 70m SSW from the front fence to rear fence of Subject Facility	 Monitoring period: Thursday 6th October to Thursday 13th October 2022 The microphone was set up 1.5 metres above ground level in the front yard, 3.5m in front of the bedroom window Generally low wind and limited precipitation for the duration of the monitoring The noise environment was dominated by traffic noise on Geelong Road 			
L2	4 Hansen Street (background measurement location) - 140m SW of the rear fence of Subject Facility with dwellings between.	 Monitoring period: Thursday 6th October to Thursday 13th October 2022 The microphone was set up 1.5 metres above ground level, set up such that topography blocked line of sight to the Subject Facility & other noise generating industry within the surrounding area Generally low wind and limited precipitation for the duration of the monitoring The noise environment was dominated by local wildlife and distant traffic on Geelong Road 			

Notes:

- 1. The monitors were set to record broadband and spectral noise descriptors, and audio for noise source verification
- 2. Weather data per Bureau of Meteorology's Laverton RAAF weather station.

Table 3 presents background noise levels relevant for derivation of noise limits.

Table 3: Period average background noise levels

ID	Location	Representat	Representative period background noise level, L ₉₀ dB(A)		
טו	Location	Day	Evening	Night	
L1	1 Robbs Road, West Footscray	49	47	44	
L2	4 Hansen Street, West Footscray	44	42	40	

Period Day: Monday to Saturday 7am - 6pm

Definitions: Evening: Monday to Saturday 6pm - 10pm; Sundays 7am - 10pm

Night: All days 10pm - 7am

Notes: NTI XL2 Class 1 noise monitors were used for the campaign. The calibration of the device was checked in the field

immediately before and after the measurement using a Brüel & Kjær Type 4231 calibrator; no drift in calibration was observed. The noise monitors conform with IEC 61672-1:2013 and IEC 61260-1:2014; the sound calibrator conforms with IEC 60942:2017, and; all carry manufacturers certification or NATA certification detailing Standard conformance testing within the

last two years and one year respectively

3.2 Offsite attended short-term noise measurements

To assist with identifying the existing noise sources in the area, Renzo Tonin & Associates conducted attended noise measurements on Thursday 6th October 2022 between 10:30am and 12:00pm. The measurement locations (A1 & A2) are shown in Figure 1 and described in Table 4 below.

These measurements have been conducted to provide a greater understanding of the surrounding environment and the potential impacts on the nearby residents to the Subject Facility.

In this way, these measurements have confirmed that the noise levels recorded at the unattended monitoring location (L1) are not impacted by noise sources (i.e. industrial facilities within the area).

Table 4: Offsite noise measurement locations

ID	Location	Measurement Details ¹
A1	Corner of Grainger & Geelong Road	 Conducted on Thursday 6th October to Thursday 13th October 2022 between 10:30am & 12pm
		 Measured noise level of 69 L_{eq} dB(A) and 59 L₉₀ dB(A)
		The microphone was set up 1.5 metres above ground level
		 The noise environment was dominated by local traffic and nearby industrial noise
A2	Front of 17 Braid St, West Footscray	 Conducted on Thursday 6th October to Thursday 13th October 2022 between 10:30am & 12pm
		 Measured noise level of 59 Leq dB(A) and 55 L90 dB(A)The microphone was set up 1.5 metres above ground level
		The noise environment was dominated by local traffic noise on Geelong Road

Notes:

- 1. Measurements were set to record broadband and spectral noise descriptors, and audio for noise source verification
- 2. NTi XL2 sound level analysers were used for the measurement campaigns. The XL2 is a Class 1 instrument having accuracy suitable for field and laboratory use. The calibration of the device was checked in the field immediately before and after the measurement using a Brüel & Kjær Type 4231 calibrator; no drift in calibration was observed. The noise monitors conform with IEC 61672-1:2013 and IEC 61260-1:2014; the sound calibrator conforms with IEC 60942:2017, and; all carry manufacturers certification or NATA certification detailing Standard conformance testing within the last two years and one year respectively.

4 Noise sources

The following noise source levels have been provided to Renzo Tonin & Associates and have been referred to in this assessment. Any noise sources that have not been provided have been sourced from our noise data library and are considered suitable to use for the purpose of this acoustic assessment.

Table 5: Specific internal warehouse equipment/activity noise levels

Item	Equipment/activity	Sound power level L _{W,eq} dB(A)
1	Bin Conveyor	75 dB(A) at 1m
2	Solvent Runi Screw Compactor	55 dB(A) at 1m
3	Inclined Auger	75 dB(A) at 1m
4	Inclined Auger	75 dB(A) at 1m
5	Runi Screw Compactor	55 dB(A) at 1m
6	Inclined Conveyor	75 dB(A) at 1m
7	Force Quad Shaft Shredder	76 dB(A) at 1m
8	Dewatering Screen	90 dB(A) at 1m
9	Dewatering Screen	90 dB(A) at 1m
10	Inclined Conveyor	75 dB(A) at 1m
11	Overband Magnet Separator	50 dB(A) at 1m
12	Bi Directional Conveyor	75 dB(A) at 1m
13	Inclined conveyor	75 dB(A) at 1m
14	Float Sink tank	75 dB(A) at 1m
15	Dewatering Auger	80 dB(A) at 1m
16	Granulator	85 dB(A) at 1m
17	Friction Washer	94 dB(A) at 1m ¹
18	Horizontal Auger	75 dB(A) at 1m
19	Mechanical Dryer	94 dB(A) at 1m ¹
20	Blower	94 dB(A) at 1m ¹
21	Pre cleaner and Magnetic Separator	90 dB(A) at 1m
22	Blower	94 dB(A) at 1m ¹
23	Double Bagging Station	75 dB(A) at 1m
24	Control Panel	Nil
25	Remote Panel	Nil

Note
1. The client has committed to attenuation measures to provide not less than 6dB noise reduction to the identified equipment. The 6dB reduction could be achieved via localised enclosures or wall/ceiling treatments to the warehouse. Such treatments are commonplace, and application is straight forward to design, during the design stage when more detailed information is available.

Table 6: Typical equipment/activity noise levels

Description	Sound power level L _{W,eq} dB(A)
Ventilation duct (operating continuously)	78 dB(A) at 1m
Outdoor air conditioner cassette (5 units assumed)	65 dB(A) at 1 metre
Forklift movement (continuous)	64 dB(A) at 5m
Small-scale exhaust fan (e.g. toilet, 5 units assumed)	57 dB(A) at 0.5 metres

5 Criteria

5.1 EPA 1826-P1 commercial noise legislation

Within the Melbourne metropolitan region, noise from commercial plant and activities affecting residential properties is governed by the Victorian Part 1 of EPA Publication 1826 'Noise Limit and Assessment Protocol for the Control of Noise from Commercial, Industrial and Trade Premises and Entertainment Venues' (1826-P1), legislated by way of the Environment Protection Act 2017 (VIC); to protect beneficial domestic uses, in particular sleep during the night period.

EPA 1826-P1 noise limits are calculated from zoning and background noise levels measured within an area, in absence of intrusive commercial noise sources. Table 7 presents the applicable noise limits which have been calculated in accordance with the EPA 1826-P1.

Table 7: EPA 1826-P1 noise limits

Period	Zor	ning level, l	L _{eq} dB(A) Background L ₉₀ dB(A) Background classification	EPA 1826-P1 limit L _{eq} dB(A)
1 Robbs	Road	d, West Foo	otscray		
Day	55		49	High Background	55
Evening	49		47	High Background	50
Night	44		44	High Background	47
4 Hanse	n Str	eet, West F	ootscray		
Day	52		44	Neutral	52
Evening	46		42	Neutral	56
Night	41		40	High Background	43
Period Definition	ıs:	Day: Evening: Night:	Monday to Saturday 7am - 6pm; Monday to Saturday 6pm - 10pm; All days 10pm - 7am	Sundays 7am - 10pm	
Notes:				for sensitive receivers that are directly aff n L2 have been used for all sensitive rece	,

EPA 1826-P1 noise limits are calculated from zoning and background noise levels measured within an area, in absence of intrusive commercial noise sources.

traffic noise from Geelong Road. These background noise levels were used to determine noise limits for each identified

sensitive receiver location

In addition, where applicable, the effective noise level is determined, for noise from commercial, industrial and trade premises, as a 30-min equivalent sound pressure level $L_{Aeq,30min}$ adjusted, where relevant for:

```
a. duration (A<sub>dur</sub>)
b. Noise character
i. tonality (A<sub>tone</sub>)
ii. impulse (A<sub>imp</sub>)
iii. intermittency (A<sub>int</sub>)
Measurement position
i. reflection (A<sub>refl</sub>)
iii. indoor (A<sub>ind</sub>)
```

The effective noise level is calculated using the following equation:

```
ENL = L_{Aeq} + (A_{dur}) + (A_{tone}) + (A_{imp}) + (A_{int}) + (A_{refl}) + (A_{ind})
```

6 Noise assessment

6.1 Noise propagation model

A Cadna-A three-dimensional noise model, implementing ISO 9613 noise propagation algorithms was built to calculate noise propagation from the Subject Facility to the nearest residential dwellings. The following propagation effects were included in the predictive model:

- Mitigation of noise with distance, including geometrical spreading and air absorption
- Reflections from buildings and environment
- Barrier effects due to obstructions between noise sources and residential receivers
- Ground absorption effects
- Local topographical changes

6.2 Commercial noise assessment

6.2.1 Operational modelling scenarios and assumptions

Renzo Tonin & Associates have provided two scenarios, including a limited operations '4 Day' scenario, and a full capacity operations 'Busy Day' scenario.

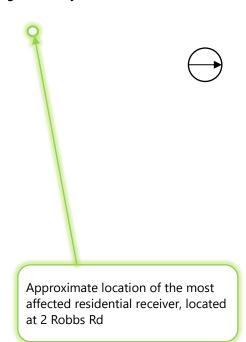
To ensure a typical worst case noise scenario, in accordance with EPA Pub 1826, the assessment assumes 30-minute operational scenario, with noise source locations provided in Figure 2 below.

Scenario A (4 Day)

- 1 x truck delivery (semitrailer arrives, idles whilst unloading, leaves) (continuously over 30-minute period)
- 1 x forklift use (moving between warehouses) (continuously over 30-minute period)
- Warehouse/Plant operations at <u>limited</u> capacity (only Item 1 to Item 9 from Table 5 operating) (continuously over 30-minute period)
- · All mechanical equipment (i.e. Vents, AC's, exhaust) operating at full capacity (continuously over 30-minute period)

Scenario B (Busy Day)

- 1 x truck delivery (semitrailer arrives, idles whilst unloading, leaves) (continuously over 30-minute period)
- 1 x forklift use (moving between warehouses) (continuously over 30-minute period)
- · Warehouse/Plant operations at full capacity (all Items from Table 5 operating) (continuously over 30-minute period)
- · All mechanical equipment (i.e. Vents, AC's, exhaust) operating at full capacity (continuously over 30-minute period)

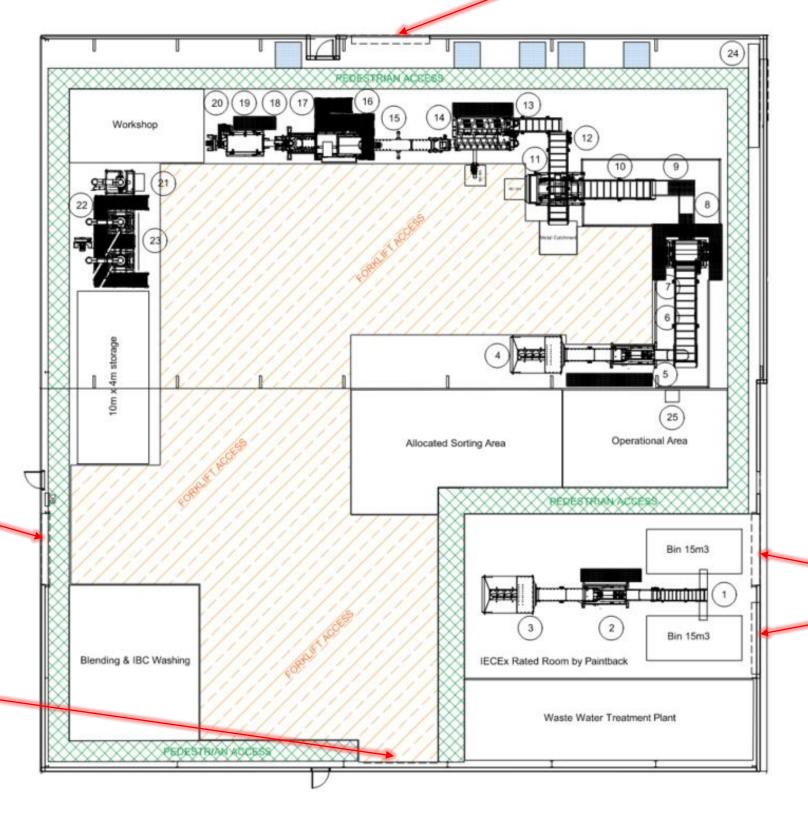

Further to the above, the following assumptions have been made with respect the various operational activities:

- · roller doors on the northern and eastern façade of the warehouse remain fully open
- Roller doors on the western and southern façade of the warehouse remain closed at all times
- All warehouse windows are closed
- Existing building construction material expected performance:

Metal clad roofing Minimum 0.55mm BMT R_w 17 Roller doors Steel roller door with sealed gaps to prevent air flow R_w 15 Reinforced glass windows 10mm wire reinforced glass R_w 20

Noise levels for sources referred to in this assessment are detailed in Section 4. Renzo Tonin & Associates understands that specific items of equipment, identified in Table 5, have a sound power level that, if not attenuated by not less that 6dB for each item of equipment, may result in predicted noise levels at sensitive receivers that are non-compliant with the EPA 1826-P1 criteria. The specific items of equipment are friction washer, mechanical dryer, and two blowers. The 6dB reduction could be achieved via localised enclosures or wall/ceiling treatments to the warehouse. Such treatments are commonplace, and application is straight forward to design, during the design stage when more detailed information is available.

Figure 2: Layout and sound source locations



Existing Roller Door is understood not to be occasionally used. Assumed fully open 50% of time in any 30-minute assessment period.

Existing Roller Door understood to remain open for continuous access between warehouses for forklift during operating hours

DARWIN STREET

Existing Roller Door not to be used.
To always remain closed.

Noise source location for equipment Items 1 to 25 detailed in Table 5. Assumed to operate at fully capacity in any 30-minute assessment period.

BRAID STREET

Existing Roller Door understood to remain open for continuous access during operating hours

Table 8: Commercial noise assessment

Receiver ID, dwelling location and noise source(s)/activities ^{1,2}	Predicted Effective no L _{eq} dB(A), Day	ise level (ENL) at dwelling,	Complies with EPA 1826-P1? Day
R1 – 1 Robbs Road, West Footscray	Scenario A (4 Day)	Scenario B (Busy Day)	55
Warehouse/Plant	50	55 ³	√ / √
Truck deliveries & carpark activities	44	44	√ /✓
All mechanical services	28	28	√ / √
Cumulative noise level	51	55	√ /√
R2 – 2 Robbs Road, West Footscray	Scenario A (4 Day)	Scenario B (Busy Day)	55
Warehouse/Plant	48	53 ³	√ /√
Truck deliveries & carpark activities	43	43	√ /√
All mechanical services	27	27	√ /√
Cumulative noise level	49	54	√ /√
R3 – 3 Robbs Road, West Footscray	Scenario A (4 Day)	Scenario B (Busy Day)	55
Warehouse/Plant	45	51 ³	√ /√
Truck deliveries & carpark activities	38	38	√ /√
All mechanical services	28	28	√ /√
Cumulative noise level	46	51	√ /√
R4 – 4 Robbs Road, West Footscray	Scenario A (4 Day)	Scenario B (Busy Day)	55
Warehouse/Plant	45	51 ³	√ /√
Truck deliveries & carpark activities	42	42	√ /√
All mechanical services	27	27	√ /√
Cumulative noise level	47	51	√ /√
R5 – 5 Hansen Street, West Footscray	Scenario A (4 Day)	Scenario B (Busy Day)	55
Warehouse/Plant	40	44 ³	√ /√
Fruck deliveries & carpark activities	37	37	√ /√
All mechanical services	29	29	√ /√
Cumulative noise level	42	45	√ / √
R6 – 17 Braid St, West Footscray	Scenario A (4 Day)	Scenario B (Busy Day)	55
Warehouse/Plant	35	40 ³	√ /√
Fruck deliveries & carpark activities	37	37	√ / √
All mechanical services	34	34	√ / √
Cumulative noise level	40	42	√ <i> </i> √

Note:

As shown, the proposed operations are predicted to comply with EPA 1826-P1 noise limits. The assessment assumes that all noise sources are operating simultaneously, which is conservative. As such, actual noise levels are expected to be lower than presented. Additionally the assessment assumes that

^{1.} Noise levels at other dwellings are lower than the noise levels presented above, as a result of greater distance from the Subject Development

^{2.} Noise sources and activities per Section 6.2.1

^{3.} Prediction includes 6dB reduction to identified items of equipment detailed in Table 5, and summarised below.

the following items of equipment have been attenuated by not less than 6dB for each item of equipment:

- Friction Washer
- · Mechanical Dryer
- Blower
- Blower

Further to the assessment, Renzo Tonin & Associates understands that the client has committed to attenuation measures to provide not less than 6dB noise reduction to the identified equipment.

The 6dB reduction could be achieved via localised enclosures or wall/ceiling treatments to the warehouse. Such treatments are commonplace, and application is straight forward to design, during the design stage when more detailed information is available.

7 Conclusion

Renzo Tonin & Associates undertook an acoustic assessment of the proposed paint recovery plant to be located at 2-44 Grainger Road, West Footscray, to assess noise from commercial operations.

We have been briefed by Davis Advisory to consider Acoustics in relation to the proposed Paint Circular Economy HQ (PaCE HQ) project in West Footscray. The PaCE HQ project is described in Annexure D of the application, and our comments and findings are referrable to that project.

In conducting the acoustic assessment, Renzo Tonin & Associates has:

- Quantified relevant noise criteria: EPA 1826-P1
- Measured noise levels from operational activities and associated mechanical equipment at a similar industrial facilities
- Analysed the noise monitoring and measurements
- Constructed a three-dimensional noise model of the Subject Facility, to assess various noise impacts (described below)
- Assessed and compared predicted levels to noise limits.

The outcomes of the acoustic assessment are:

- Noise levels from the representative mechanical services were found to conform at all times with EPA 1826-P1 criteria.
- Noise levels from anticipated delivery activities were found to conform at all times with EPA 1826-P1 criteria.
- Noise levels from the warehouse/plant operations (i.e. other than deliveries) were found to conform at all times
 with EPA 1826-P1 criteria, with the specific requirement for a not less than 6dB noise reduction to the identified
 equipment.

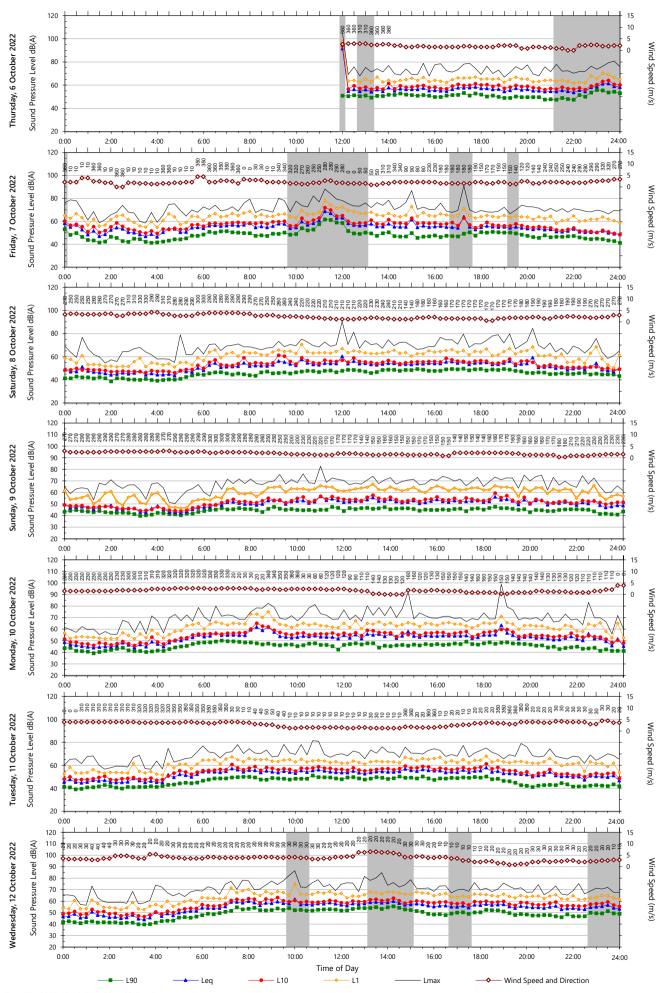
The 6dB reduction could be achieved via localised enclosures or wall/ceiling treatments to the warehouse. Such treatments are commonplace, and application is straight forward to design, during the design stage when more detailed information is available.

Based on the above, the Subject Facility is expected to conform with all nominated criteria, and on this basis, not unreasonably affect noise amenity in the area.

APPENDIX A Glossary of terminology

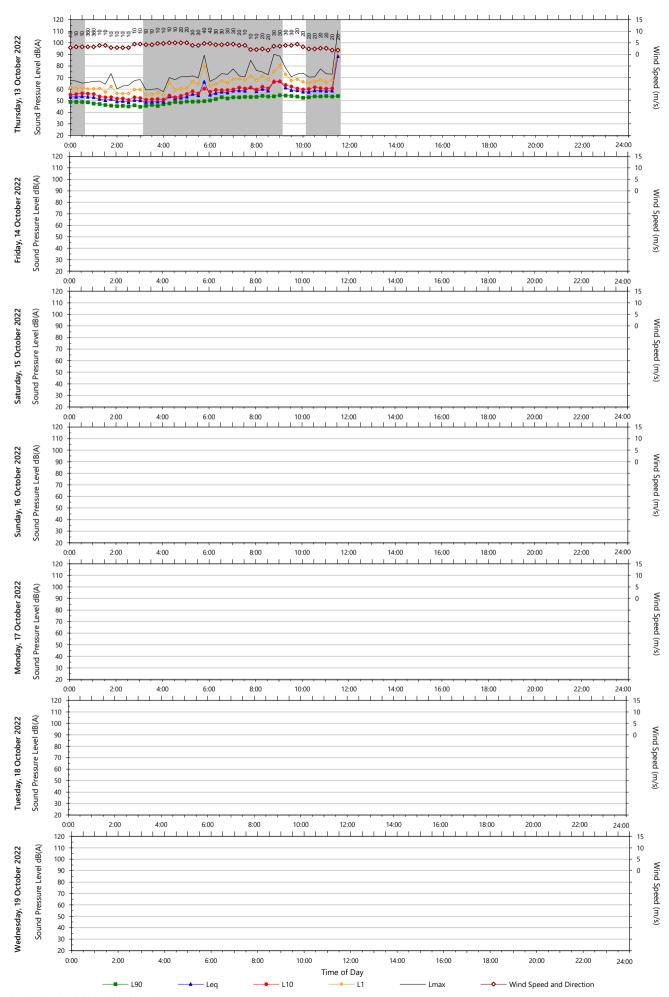
The following is a brief description of the technical terms used to describe noise to assist in understanding the technical issues presented.

Air-borne noise	Noise which is fund	damentally	transmitted by way of the air and can be attenuated by the use of	
			ically between the noise source and receiver.	
Ambient noise			ssociated within a given environment at a given time, usually ources near and far.	
Assessment period	The time period in	which an as	ssessment is made. e.g. Day 7am-10pm & Night 10pm-7am.	
Assessment Point	A location at which	a noise or	vibration measurement is taken or estimated.	
Attenuation	The reduction in th	e level of so	ound or vibration.	
A-weighting	A filter applied to the sound recording made by a microphone to approximate the response of the human ear.			
Background noise	noise, measured in the minimum noise A-weighted noise le	the absence levels mea evel exceed leasured as	used to describe the underlying level of noise present in the ambient se of the noise under investigation. It is described as the average of sured on a sound level meter and is measured statistically as the led for ninety percent of a sample period. This is represented as the an overall level or an L_{90} noise level when measured in octave or	
Barrier (Noise)	A natural or constructed physical barrier which impedes the propagation of sound and includes fences, walls, earth mounds or berms and buildings.			
Berm	Earth or overburden mound.			
Buffer	An area of land between a source and a noise-sensitive receiver and may be an open space or a noise-tolerant land use.			
Bund			wall of brick, stone, concrete or other impervious material, which rimeter of a compound.	
Decibel [dB]	The units that sound is measured in. The following are examples of the decibel readings of common sounds in our environment:			
Deciber [db]				
Decise, [ab]				
Section (as)	common sounds in	our enviro	nment:	
section (as)	threshold of hearing	our enviro 0 dB	nment: The faintest sound we can hear, defined as 20 micro Pascal	
section (as)	common sounds in threshold of	our enviro 0 dB 10 dB	nment: The faintest sound we can hear, defined as 20 micro Pascal	
	threshold of hearing	0 dB 10 dB 20 dB	nment: The faintest sound we can hear, defined as 20 micro Pascal Human breathing	
	threshold of hearing	0 dB 10 dB 20 dB 30 dB	nment: The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location	
	threshold of hearing almost silent generally quiet	0 dB 10 dB 20 dB 30 dB 40 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library	
	threshold of hearing	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library Typical office space or ambience in the city at night	
	common sounds in threshold of hearing almost silent generally quiet moderately loud	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library Typical office space or ambience in the city at night CBD mall at lunch time	
	threshold of hearing almost silent generally quiet	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library Typical office space or ambience in the city at night CBD mall at lunch time The sound of a car passing on the street	
	common sounds in threshold of hearing almost silent generally quiet moderately loud	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB 80 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library Typical office space or ambience in the city at night CBD mall at lunch time The sound of a car passing on the street Loud music played at home	
	common sounds in threshold of hearing almost silent generally quiet moderately loud	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB 80 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library Typical office space or ambience in the city at night CBD mall at lunch time The sound of a car passing on the street Loud music played at home The sound of a truck passing on the street	
	common sounds in threshold of hearing almost silent generally quiet moderately loud	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB 80 dB 90 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library Typical office space or ambience in the city at night CBD mall at lunch time The sound of a car passing on the street Loud music played at home The sound of a truck passing on the street Indoor rock band concert	
	common sounds in threshold of hearing almost silent generally quiet moderately loud loud very loud	0 dB 10 dB 20 dB 30 dB 40 dB 50 dB 60 dB 70 dB 80 dB 90 dB 100 dB	The faintest sound we can hear, defined as 20 micro Pascal Human breathing Quiet bedroom or in a quiet national park location Library Typical office space or ambience in the city at night CBD mall at lunch time The sound of a car passing on the street Loud music played at home The sound of a truck passing on the street Indoor rock band concert Operating a chainsaw or jackhammer	


dB(A)	A-weighted decibel. The A- weighting noise filter simulates the response of the human ear at relatively low levels, where the ear is not as effective in hearing low frequency sounds as it is in hearing high frequency sounds. That is, low frequency sounds of the same dB level are not heard as loud as high frequency sounds. The sound level meter replicates the human response of the ear by using an electronic filter which is called the "A" filter. A sound level measured with this filter is denoted as dB(A). Practically all noise is measured using the A filter.
dB(C)	C-weighted decibels. The C-weighting noise filter simulates the response of the human ear at relatively high levels, where the human ear is nearly equally effective at hearing from mid-low frequency (63Hz) to mid-high frequency (4kHz), but is less effective outside these frequencies. The dB(C) level is not widely used but has some applications.
Diffraction	The distortion of sound waves caused when passing tangentially around solid objects.
EPA	Environment Protection Authority
Flanking	Flanking is the transfer of sound through paths around a building element rather than through the building element material directly. For example, sound travelling through a gap underneath a door or a gap at the top of a wall.
Fluctuating Noise	Noise that varies continuously to an appreciable extent over the period of observation.
Free-field	An environment in which there are no acoustic reflective surfaces. Free field noise measurements are carried out outdoors at least 3.5m from any acoustic reflecting structures other than the ground.
Frequency	Frequency is synonymous to pitch. Sounds have a pitch which is peculiar to the nature of the sound generator. For example, the sound of a tiny bell has a high pitch and the sound of a bass drum has a low pitch. Frequency or pitch can be measured on a scale in units of Hertz or Hz.
Heavy Vehicle	A truck, transporter or other vehicle with a gross weight above a specified level (for example: over 8 tonnes).
Impulsive noise	Having a high peak of short duration or a sequence of such peaks. A sequence of impulses in rapid succession is termed repetitive impulsive noise.
Intermittent noise	The level suddenly drops to that of the background noise several times during the period of observation. The time during which the noise remains at levels different from that of the ambient is one second or more.
L ₁	The sound pressure level that is exceeded for 1% of the time for which the given sound is measured.
L ₁₀	The sound pressure level that is exceeded for 10% of the time for which the given sound is measured.
L ₉₀	The level of noise exceeded for 90% of the time. The bottom 10% of the sample is the L_{90} noise level expressed in units of dB(A).
L _{Aeq} Or L _{eq}	The "equivalent noise level" is the summation of noise events and integrated over a selected period of time, which would produce the same energy as a fluctuating sound level. When A-weighted, this is written as the L_{Aeq} .
L _{max}	The maximum sound pressure level measured over a given period. When A-weighted, this is usually written as the $L_{\mbox{\scriptsize Amax}}$.
L _{min}	The minimum sound pressure level measured over a given period. When A-weighted, this is usually written as the L _{Amin.}
Loudness	A rise of 10 dB in sound level corresponds approximately to a doubling of subjective loudness. That is, a sound of 85 dB is twice as loud as a sound of 75 dB which is twice as loud as a sound of 65 dB and so on. That is, the sound of 85 dB is four times or 400% the loudness of a sound of 65 dB.
Noise	Unwanted sound
Reflection	Sound wave reflected from a solid object obscuring its path.
SEL	Sound Exposure Level (SEL) is the constant sound level which, if maintained for a period of 1 second would have the same acoustic energy as the measured noise event. SEL noise measurements are useful as they can be converted to obtain $L_{\rm eq}$ sound levels over any period of time and can be used for predicting noise at various locations.

Sound absorption	The ability of a material to absorb sound energy by conversion to thermal energy.
Sound level meter	An instrument consisting of a microphone, amplifier and indicating device, having a declared performance and designed to measure sound pressure levels.
Sound power level	Ten times the logarithm to the base 10 of the ratio of the sound power of the source to the reference sound power of 1 pico watt.
Sound pressure level	The level of noise, usually expressed in decibels, as measured by a standard sound level meter with a microphone referenced to 20 mico Pascal.
Tonal Noise	Sound containing a prominent frequency and characterised by a definite pitch.

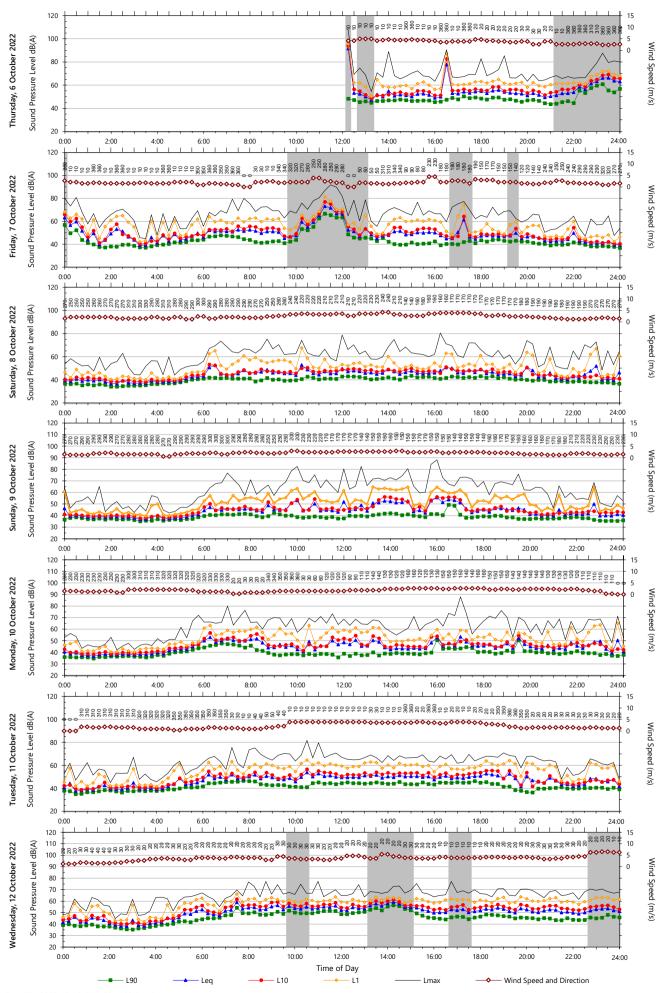
APPENDIX B Noise monitoring


B.1 L1 – 1 Robbs Road Resident's front yard

Greyed out periods in noise monitoring charts correspond to times of precipitation or excessive wind, referenced from Bureau of Meteorology Laverton RAAF Weather Station.

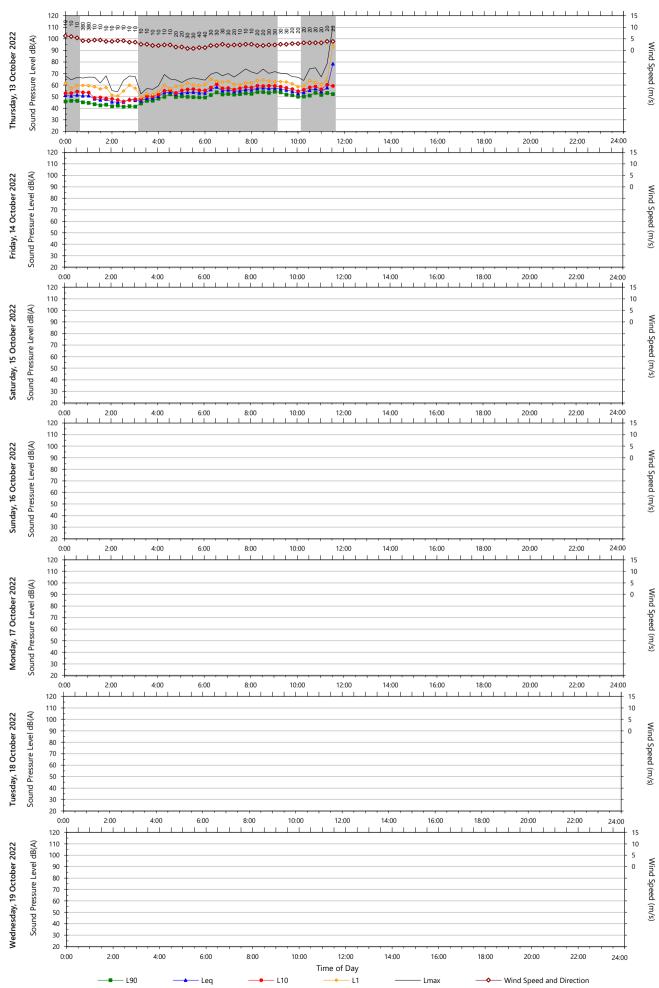
Data File: 2022-10-06_SLM_001_123_Rpt_Report.txt

Template: QTE-26 Logger Graphs Program (r38)



Data File: 2022-10-06_SLM_001_123_Rpt_Report.txt

Template: QTE-26 Logger Graphs Program (r38)


B.2 L2 – 4 Hansen Street Resident's rear yard

Greyed out periods in noise monitoring charts correspond to times of precipitation or excessive wind, referenced from Bureau of Meteorology Laverton RAAF Weather Station.

Data File: 2022-10-06_SLM_001_123_Rpt_Report.txt

Template: QTE-26 Logger Graphs Program (r38)

Data File: 2022-10-06_SLM_001_123_Rpt_Report.txt

Template: QTE-26 Logger Graphs Program (r38)